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THE EFFECT OF THE REINFORCEMENT STRUCTURE
ON THE HEAT CONDUCTIVITY OF SHELLS OF REVOLUTION WITH
A SYSTEM OF TUBES FILLED WITH A LIQUID HEAT-TRANSFER AGENT

Yu. V. Nemirovskii and A. P. Yankovskii UDC 536.21

The initial boundary-value heat-conduction problem for shells reinforced by tubes filled with
a flowing liquid heat-transfer agent is considered. The dependence of the coefficients in the
heat-conduction equations on the thermophysical characteristics of the composition phases, re-
inforcement parameters, and shell geometry is studied. A comparative analysis of the stationary
temperature fields in thin shells of revolution of different Gaussian curvature is performed for
various reinforcement structures and heat-exchange regimes. It is shown that the tempera-
ture distribution in the shells depends strongly on the reinforcement structure and the shell
geometry, which opens up new possibilities of designing optimal structures.

The structural elements designed for heat accumulation and transfer are widely used in modern power
installations, transport systems, jet engines in aerospace engineering, laser and MHD installations. etc. The
potentialities of using homogeneous materials in these installations have almost been exhausted. Further
progress is associated with composite structures, which ensure the discrete, continuous, or discrete-continuous
distribution of thermophysical characteristics and heat sources. These structures can be reinforced by curvi-
linear tubes filled with a flowing liquid heat-transfer agent. The heat conductivity of these structures equipped
with a system of “heat tubes™ has not yet been investigated.

1. Formulation of the Problem. We consider a shell reinforced by N families of constant-cross-
section tubes filled with an ihcompressible fluid. In the absence of internal heat sources and in the orthogonal
curvilinear coordinates x; (i = 1, 2, 3), the linear heat conduction of the shell is governed by the following
system [1]:
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Here T is the temperature of the composite shell, C and A;; are the reduced heat capacity and eflective heat
conductivities of the shell, respectively, Ag, ¢, pr. and T}, are the linear heat conductivity, specific heat, bulk
density. and temperature of the fluid that fills tubes of the Ath family, respectively, p. and Ry are the bulk
densities of the binding material and the material of the tubes of the kth fi:nily, respectively, c. and C). are
the specific heats of the binding material and the tubes of the kth family, icspectively, Ae, A, and Xoy are
the linear heat conductivities of the isotropic binder and the transversely isotropic tube of the kth family in
the longitudinal ud trar<rse directions, respectively, rr = const is the internal cross-sectional radius of the
tubes of the kth famils is the coefficient of heat exchange between the tubes of the kth family and
the fluid, vy, is the longitudu component of the fluid flow rate in the tubes of the kth family [since the fluid
is incompressible (p; = const) and the cross sections of the tubes are constant, we have v, = const along
the tube axis], Q and w;, are the intensity of reinforcement by the tubes of the kth family and the intensity
of the fluid that fills these tubes (volume content of the fluid of the Ath family in the volume element of
the heat exchanger), ay is the angle of reinforcement by the tubes of the Ath family, reckoned from the x;
direction, and A; are the Lamé parameters; the fixed value of the parameter x3 corresponds to the elementary
reinforced Lier. and summation is performed from 1 to IV if the limits are not indicated. The quantities wy,
Q., and A must satisfy the inequalities
we20, Q>0 (h=12...,N), A=1- (wx+%) >0 (1.6)
k
The conditions of constant cross sections and constant internal cross sections of the tubes of the kth
family have the form [2]

(A2 Aswidiy) 1 + (ArAswilin) 2 = 0. (A2A3Qli) 1 + (A1 AsQrli2) 2 =0 (1<K N). (1.7)

Consequently, the complete svstem of equations that describes the linear heat conductivity of a shell
reinforced by heat tubes of constant cross section is determined by equations and relations (1.1)~(1.7). which
must be supplemented by the initial and boundary conditions for the temperatures T and Tj. At the edge
S¢ where the tubes of the kth family enter the shell, the values of the functions wy and € must be specified
12].

It is noteworthy that. in practice, the heat conductivities, specific heat, and intensity of the internal
heat sources of a composite material are assumed to be known from experiments. However, analysis of
relations (1.1), (1.3), and (1.4) shows that in heat tube-reinforced shells, the reduced heat conductivities. the
specific heat, and the officiency of heat exchange depend greatly not only on the thermophysical characteristics
of the phases of the composition, but also on the reinforcement parameters: the angle a4, the intensities 2
and wy. and the dimension of the tube internal cross section ry.

2. Heat Conductivity of Thin Shells of Revolution Reinforced by Heat Tubes. In analysis
of shell-type thin-walled structures. it is expedient to reduce the three-din: :ional heat-conduction problem
described by system (1.1), (1.2) to a two~dimensional problem. To this end, we employ the Bubnov- Galerkin
procedure in the variable 3, assuming that the coefficients of corresponding expansions of the functions T’
and T}, depend on the variables t, r, and 2. Moreover, in view of the fact that the shell is thin. we can
confine our analysis to three terms in these expansions [3]:
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The Lamé parameters A; (A3 = 1), the reinforcement parameters {0, wy, and «y, and the functions C and
A;; can be assumed to be independent of x3 [2].

We assume that the heat exchange between the ambient medium and the faces of the shell of thickness
H = 2h = const obeys the Newton law. As a result, the closed system of equations that describes the heat
conduction of this structure has the following form:
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Here B = a{—(p+ + p-)[H™' + hair — a21)]/(38) + (p- — p4)(a22 — a12)/(24)}, Dy = alps + (p+ —
p-Yhaga/A — (g + p_)Hhas /(3A)], D- = afp- + (p— — py)hap/A + (uy + p-)Hhay1/(30)], A =
aiaz2 — ay2as;, an = —(my +h), app = —H(mg +h/3), azr = m_+h, azp = —H(m_ +h/3), my = Asz/ps,
and Tyoo and po are, respectively, the ambient temperature and the coefficients of heat exchange between
the shell and the ambient medium from the side of the “external” (subscript plus) and “internal” (subscript
minus) faces. Similar equations can be obtained in the case where the different temperature and heat-flux
boundary conditions or mixed boundary conditions [1] are specified on the shell faces.

Consequently, for thin shells, the three-dimensional heat-conduction equations (1.1) and (1.2) are
reduced with sufficient accuracy to equations of the type {2.2) for the desired functions ©, Oy, T,E_l) , and 6y,
which depend only on the time ¢ and two spatial variables x1 and ra.

To formulate the initial boundary-value problem corresponding to system (2.2), we integrate the initial
and boundary conditions over the thickness of the shell. As a result, we obtain the initial and boundary
conditions for the functions O, O, T,El) , and 6.

We use the example of simple structures to illustrate the effect of the reinforcement structure on the
temperature field. Below, we confine ourselves to thin shells of revolution reinforced axisymmetrically over
equidistant surfaces.

Since the initial boundary-value problem corresponding to system (2.2) is linear and its solution is
periodic in the z» coordinate, we can expand the desired functions ©, Oy, T,SU , and #€; and the known
functions T+, in Fourier series in x2 [4] and reduce the problem to a system of ordinary differential equations.

Upon the axisymmetric thermal action, these equations become
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where T =T = ©/H and Ty, = T\") = ©4/H.

3. Solution of the Problem and Discussion of Results. We consider the heat conduction for
three types of shells of revolution characterized by:

1) The zero Gaussian curvature (K" = 0) {conical shell):

R(z1) = [(z1 - 2Y)R' — (21 — 2D R")/(x} - 2). (3.1)
2) The positive Gaussian curvature (K" > 0) [the shell shaped like an elliptic paraboloid (SSEP)]:
R(zy)=avzi —c+b. (3.2)

where

a=(R'- RO)(\/;I'{ —-c- \/;1"1’ —c)—l, b=R" —a\/:r? —c, ec<al. (3.3)

3) The negative Gaussian curvature (K < 0) [the shell shaped like a one-sheeted hyperboloid of
revolution (SSOH)]:

(3.4)
where

a? = [(ROP (e} - 0 — (B = )2/} — 0 = (8 = )]
b = [(R")? = (RY?]/[(x} = o)* = (2 — )7, d<ege (3.5)

A =R - R2D/(R'-R%, o =(R%] + R':D)/(R' + R%).

In relations (3.1), (3.3), and (3.5), it is assumed that 2} > 29, R' > R, and R’ = R(2), where i = 0, 1;
the parameter ¢ enables us to specify the families of shells (3.2) and (3.4); note that the SSEP and SSOH
degenerate into conical shells as ¢ — —o0 and ¢ — A&, respectively.

In the axisymmetric case, the conditions of constant cross-sectional areas of the tubes (1.7) have the

form [2]
RQpcosqy = Qi = const,  Rwpcosqy =wy =const (k=1,2,...,N). (3.6)

where ., and w,; determine the total cross-sectional areas and internal cross-sectional areas of the tubes
of the kth family, respectively, with an accuracy to constant multiplier. These parameters can be the initial
data of the problem.

We study the effect of the reinforcement structure on the temperature field in shells with equal charac-
teristic dimensions (the lengths along the axes of revolution and the radii of the edges) for the same boundary
conditions. To compare different reinforcement variants, we use the criterion of equal total cross-sectional
areas {14 and equal internal cross-sectional areas w,y of the tubes of the kth family, which corresponds to
the equal fluid flow rate per unit time for any reinforcement variants at the same values of ;.

We consider the shells of revolution with edges of the radii R and R! (R' = 3R%) for 29 = 0 and
xt = 3RO, respectively. The shells are made of copper [\ = 400 W/(mn - deg), c. = 419 J/(kg - deg),
and p. = 8940 kg/m? [5]) and reinforced by two families (N = 2) of steel tubes [\y = 45 W/(m - deg),
Cr = 568 J/(kg - deg). and Ry = 7780 kg/m3, where i, k = 1, 2]. The tubes are located symmetrically in
the meridional direction (ag = —a)) and characterized by the intensities w; = wy, Q) = Vo, we1 = waz,
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Q. = Do, and Q. = 0.25w,;. The quantities w,; in (3.6) are determined from the additional condition
A > 0.2. The tubes are filled with transformer oil (A; = 0.107 W/(m - deg), ¢, = 1905 J/(kg - deg), and
pr = 856 kg/m3 [6]) which flows with the same velocity (v, = vo).

The equations governing the stationary axisymmetric heat conduction of the shells under the conditions
of thermal insulation at its faces are obtained from (2.3) by ignoring terms which contain the partial derivatives
with respect to t. We write these equations in dimensionless form:

(Ayr) " HrAT\aAn TY + 2<[(Arr) (AT e T

— w1 AT cos o (AT cos o T1)'| = 2w Hi (T — T}) = 0; (3.7)
cAT cos (AT cos o TY) — ViAT'cosanT{+ H(T -T)) =0, To =T, (3.8)

where e = /\l/\c_lv Vl — clplleO/\c—lv
(3.9)

Hy, =2h(R"?/(rAe), Au=AuX', r=R/R

(the prime denotes differentiation with respect to the dimensionless variable z = z,/ RY).

For the above-chosen materials of the binder and tubes, the coefficient Ay, in (3.7) and (3.9) is of order
1 and ¢ = 2.675-107*. For R® = 1 m and v; = 0.01 m/sec, we obtain V; = 40.77. The constant H; in (3.7)-
(3.9) can be of order 1 provided the internal diameter of the tubes 2r) is sufficiently small. Consequently, <
is a small parameter. The authors showed in [1] that by virtue of the small value of ¢, it suffices to use the
asvmptotic solution of system (3.8), (3.9). To this end, the terms containing ¢ are ignored in the system,
which simplifies the corresponding boundary-value problem. In this case, the function T; needs only one
boundary condition at the edge S%, where the fluid flows into the shell: T} (SY) = Tis.

We analyze the following reinforcement variants: 1) meridional reinforcement where two families of
tubes are located in the meridional directions (), = a2 = 0); 2) spiral reinforcement where the tubes are

located at an angle oy = (=1)F7/4-(k = 1, 2); 3) spiral reinforcement where the tubes are located at an angle
o = (=1)*7/3 (k = 1, 2); 4) reinforcement in the asymptotic directions {7], which is typical of the SSOH:
tanag = (-1)*/RR"/(1 + (R)?), k=12 (3.10)

(in this case, the reinforcement trajectories are rectilinear).

Figures 1-3 show the distribution of the temperature T in the conical shell, the SSEP (¢ = —0.01R?),
and the SSOH (¢ = 0.5RY), respectively, for various reinforcement variants and heat-exchange regimes (the
dimensionless x is laid off as the abscissa). The temperature

T(29) = T(x}) = 250°C, (3.11)

is specified at the edge 2 where the oil flows into the shell and T} (z9) = 20°C. Figure 4 shows the distribution
of the fluid temperature T} in the conical shell (curves with the same numbers in Figs. 1-4 refer to the same
reinforcement variant or heat-exchange regime). A similar distribution of T} is observed for the fluid that
fills the tubes in the SSEP and the SSOH.

Curves 1 refer to the case where the heat exchange between the tubes and the fluid is absent (the internal
surfaces of the tubes are thermally insulated or the tubes contain no fluid). In this case, the temperaturcs
T and T remain constant. Curves 2-4 characterize the temperature distribution in the oil and in the shells
reinforced at different angles [ay, = 0, oy = £n/4, and o = £7/3 (k = 1. 2), respectively] for the same
heat-exchange regimes (¢ = 2.7 - 107, V) = 40, and H; = 4). For the same heat-exchange parameters. an
increase in the reinforcement angle from 0 to 7/3 leads to an abrupt decrease in the temperature of the shells
(curves 2-4 in Figs. 1-3), whereas the fluid temperature remains almost the same (curves 2—4 in Fig. 4).
The reasons are the following. As a criterion of comparison between the reinforcement variants, we chose the
condition of equal total cross-sectional areas and the condition of equal internal cross sections of the tubes,
i.e., the equality of the quantities w,x and Q. (3.6) in all the variants. As the reinforcement angle increases
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from 0 to 7/3, the length of the capillary tubes in the shell increases; provided the fluid flow rate remains the
same, this leads to an increase in the duration of the heat exchange between the fluid element, which moves
along the tube, and the tube wall. At the same time, the amount of shell material decreases (A decreases
because of the increase in wy and €24), which intensifies its cooling (curves 2-1 in Figs. 1-4).

Curves 5 and 6 characterize the temperature distribution in the shells reinforced in the meridional
direction (ay = 0) but for other heat-exchange regimes. Curves 5 refer to the case where the oil flow rate is
increased by a factor of 5 (V; = 200 and H; = 4). This leads to a slower increase in the fluid temperature
T, [it follows from (3.8) that 7] — 0 as V; — oo and ¢ = 0] and to a more intense heat exchange between
the fluid and the tubes compared to the case represented by curves 2 in Figs. 1-1 (ax = 0. V| = 40. and
H; = 4). Curves 6 correspond to the case where the internal diameters of the tubes are decreased by a factor
of 5 (V; = 40 and H; = 20) for the initial fluid flow rate, whereas their number is increased by a factor of
25. In this case. the total area of the internal cross sections of the tubes remains the same (the functions wy,
and Q. are the same in all the structures reinforced in the meridional directions). As one would expect, the
decrease in the cross-sectional area of the tubes and the increase in their number intensify the heat exchange
between the shell and the fluid. Moreover, the outlet temperature of the oil in the conical shell increases
by a factor of 2.12 compared to the case represented by curve 2 in Fig. 4. In all the shells considered, the
minimum temperature almost halves (curves 2 and 6 in Figs. 1-3).

Curve 7 in Fig. 2 refers to the meridional reinforcement of the SSEP with a different geometry [c =
—10R? in (3.2)] for the same heat-exchange regime (V; = 40 and H, = 4); curves 7-9 in Fig. 3 characterize
the temperature distribution in the SSOH of different geometry [in (3.5), ¢/R? = 0.5, 0, and -1, respectively]
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TABLE 1

Curve Minimum temperature in the shell, °C
No. conical shell SSEP SSOH
1 250.0 250.0 250.0
2 128.6 130.4 100.9
3 92.6 96.1 65.2
q 59.0 62.6 38.6
5 119.6 121.3 91.3
6 74.4 76.5 62.3
7 — 129.2 76.2
3 — — 103.3
9 — — 123.8

reinforced in the asymptotic directions (3.10) for Vi = 40 and H, = 4. Comparison of curves 2-4 and 7 in Fig. 3
shows that, for the same heat-exchange regimes, the reinforcement in the rectilinear asymptotic directions,
which is the simplest from the practical viewpoint, does not ensure the most intense heat removal from the
shell [in the sense that the temperature in the SSOH with spiral reinforcement at the angles a = +7/4 and
ap = £7/3 is smaller than that upon reinforcement in the asymptotic directions (3.10) (curves 3 and 4 in
Fig. 3 lie below curve 7)]. _

However, not only the reinforcement structure but also the shape of the shell affects the temperature
distribution. Table 1 lists the minimum temperatures for the conical shell, the SSEP, and the SSOH. Inspec-
tion of Table 1 shows that of the three types of shell, the SSOH is cooled most intensely and the SSEP is
cooled least intensely for the same reinforcement structures and heat-exchange regimes. This is due to the
following facts. Since the values of w,; and €, in (3.6) are the same in all the variants, the functions wy and
. depend strongly on the radius of the shell R(z) for the same angles of reinforcement cy: the smaller the
radius R, the greater the values of wy and €Y, and, hence, the lower the intensity of distribution of the basic
shell material A [see (1.4)] and the more intensely it is cooled with other conditions being equal (the reinforce-
ment structure and the heat-conduction regime). For example, as x; increases, the radius R(z;) of the SSOH
with ¢ = 0.5R? (curves 2-7 in Fig. 3) first decreases from the value of R? to the value of R(c) (the parameter
¢ in (3.4) determines the position of the throat line of the SSOH middle surface [7}) and then increases up to
the value of R!, but the values of the radius R(z|) do not exceed R® in the interval 2§ < 2 < 2¢—129 = RO.
The SSOH is cooled more intensely than the conical shell and the SSEP, since R(z;) > R? for z, > 29 for
these shells. Moreover, the radius R of the conical shell varies as z; [R'(x)) = const], whereas the radius R of
the SSEP with ¢ = —0.01R® increases abruptly in the neighborhood of the edge z{ [R'(29) ‘== +00], and at
the points remote from this edge. R changes insignificantly and remains greater than the radius of the conical
shell. Therefore, with other conditions being equal, the SSEP is cooled less intensely than the conical shell.

The shape of the generatrix affects both the magnitude and distribution of the temperature field in the
shell. For example, in the SSEP (see Fig. 2) the minimum temperature points are located near the edge x‘l),
and in its neighborhood, the temperature gradient is greater than that in the conical shell (see Fig. 1) and the
SSOH (see Fig. 3). Moreover, the minimum temperatures that correspond to curves 3 and 6 in Fig. 3 differ
by 2.9°C and those in Figs. 1 and 2 differ by 18.2 and 19.6°C, respectively. Consequently, for certain values
of the parameter ¢ close to the limiting values (¢ — cl = 0.75R%), a portion of curve 3 lies below curve 6 for
the SSOH (in Figs. 1-3, curve 6 lies below curve 3). Consequently, the choice of the reinforcement variant
that ensures the most intense heat removal from the structure depends on the shell geometry.

As was noted above, the SSEP and the SSOH degenerate into conical shells as ¢ — —~o0 and ¢ — 9,
respectively [see (3.2)—(3.5)]. Indeed, curve 7 in Fig. 2 refers to ¢ = —10R? and the meridional reinforcement;
a comparison of this curve and curve 2 in Fig. 1 (the conical shell reinforced in the meridional direction)
shows that the temperatures differ insignificantly, the difference between their minimum values being 0.6°C.

731



T.°c] 6
600 -
400 1
4
200 -
. 3
- 257
T T T T ’
0 1 2 x

Curves 8 and 9 in Fig. 3 refer, respectively, to ¢/R% = 0 and —1 of the SSOH reinforced in the asymptotic
directions (as ¢ — ¢ = —1.5R", the SSOH degenerates into a conical shell and the asymptotic directions
tend to meridional directions: ap — 0). The minimum temperature values in curves 8 and 9 (see Fig. 3)
differ from those in curve 2 (see Fig. 1) by —25.3 and —4.8°C, respectively. Consequently, as ¢ tends to the
limiting values [see (3.2)-(3.5)], the SSEP temperature is the upper bound and the SSOH temperature is the
lower temperature bound in the conical shell for the corresponding reinforcement structures.

If the minimum condition for the lowest temperature is used as a thermophysical criterion of effective
reinforcement of a tubular shell of fixed geowetry, the spiral reinforcement with a winding angle oy, = +7/3
is the best variant. which is seen from Figs. 1-3 (curves 4); if the shell geometry is varied, the best variant
is the SSOH with the above-mentioned reinforcement, for which the minimum temperature is close to room
temperature (T, = 38.6°C).

It is noteworthy that not only the reinforcement structure and the geometry but also the boundary
conditions for the temperature affect the temperature distribution. We consider, for example, the SSEP with

the initial geometrical parameters (¢ = —0.01RY) and specify the temperature and the zero heat flux at the
edge 9
T(Y) =25°C, q@)) =0 (3.12)

Figure 5 shows the temperature distribution in this shell for different reinforcement structures (the
curve numbers correspoud to those in Fig. 2). Cowmparing diagrams in Figs. 2 and 5, we infer that the
change in the boundary conditions leads to quantitative and qualitative changes in the temperature field
in the shell. For example, for boundary conditions (3.11) (see Fig. 2), the most intense heat removal from
the shell corresponds to the spiral reinforcement with angles of oy, = £7/3 (curve 4 in Fig. 2), whereas, for
boundary conditions (3.12), this result-corresponds to the meridional reinforcement (o, = 0) characterized
by a large value of H; (curve 6 in Fig. 5). Consequently, the reinforcement structure that ensures the most
intense heat removal from the shell for one set of boundary conditions might be not optimal for another set
of boundary conditions. For boundary conditions (3.12) and different initial data, the discrepancy between
the temperatures amounts to hundreds of degrees (see Fig. 5) instead of tens of degrees as in the case of
boundary conditions (3.11) (see Fig. 2). Morcover, the effect of the shell shape is more pronounced for
boundary conditions (3.12) than for boundary conditions (3.11). For example, for boundary conditions (3.12)
and different initial data (Vi, H|), the SSOH and SSEP temperatures differ by severalfold (by hundreds and
thousands of degrees) instead of tens of degrees, which is the case of conditions (3.11) (see Figs. 2 and 3),
the reinforcement structures and heat-exchange regime being the same.

Diagrams in Fig. 5 show that there exist wide possibilities of controlling the temperature field in
tubular shells; therefore, various problems of target-oriented control can be formulated on a set of solutions
of the heat-conduction problem. For example, if the temperature T'(z]) and the heat flux q;(z}) are specified
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at the edge x!, one can obtain the required values of T(x9) and ¢,(z9), say, T(z) is room temperature and
q1(29) = 0 at the edge 29, by varying the reinforcement structure. Two additional boundary conditions at the
edge 29 can be satisfied owing to the fact that the heat-conduction problem is linear and two free parameters
of reinforcement exist: the direction oy and the cross-sectional dimension of the tubes r; (or H;). In the
classical heat-conduction problems of solids. these conditions at the edges of a shell cannot be satisfied.

In summary, the temperature field in tubular composite structures like shells of revolution depends
qualitatively and quantitatively on the reinforcement structure (g, w, rt), the thermophysical characteristics
of the composition phases Ac, ik, ¢k, and pg (i. k = 1, 2), the fluid flow rate vy, the geometry of the shell
R(z)), and the thermal boundary conditions. This offers wide possibilities in designing effective reinforcement
projects and structures; in so doing, it is necessary to formulate separate problems of target-oriented control
of the reinforcement structures for shells of different geometry and different heat actions.
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